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Solitary wave dynamics in generalized Hertz chains:
An improved solution of the equation of motion
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The equation of motion for a bead in a chain of uncompressed elastic beads in contact that interact via the
potentialV(d);d n, n.2, d being overlap, supports solitary waves and does not accommodate sound propa-
gation@V. Nesterenko, J. Appl. Mech. Tech. Phys.5, 733 ~1983!#. We present an iteratively exact solution to
describe the solitary wave as a function of material parameters and a universal, infinite set of coefficients,
which depend only onn. We compute any arbitrary number of coefficients to desired accuracy and show that
only the first few coefficients of our solution significantly improves upon Nesterenko’s solution. The improved
solution is a necessary step to develop a theoretical understanding of the formation ofsecondarysolitary waves
@M. Manciu, et al., Phys. Rev. E63, 011614~2001!#.
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We consider a monodisperse chain of elastic sphere
radiusR in which the spheres are barely touching one
other, i.e., there is zero loading of the spheres. The sph
repel upon overlap by an amountd i ,i 11[2R2@(zi 11
1ui 11)2(zi1ui)#, where zi describes the initial equilib-
rium position of the graini in the one-dimensional~1D! sys-
tem of elastic beads, andui the displacement of the sam
grain from the equilibrium position. Then, according
Hertz law @1# the repulsive potential between two adjace
spheres is given by,

V~d i ,i 11!5aud r ,i 11u5/2, d>0,

V~d i ,i 11!50, d,0, ~1!

where a5„2/@5D(Y,s)#…(R/2)1/2 and D(Y,s)5(3/2)@(1
2s2)/Y#, and Y and s denote the Young’s modulus an
Poisson’s ratio. In this paper, we study the dynamics for
potential in Eq. ~1! and for the general caseV(d i ,i 11)
5ad i ,i 11

n, n.2 @1,2#. Given the magnitude ofn, it may be
noted that the repulsive potentialV(d i ,i 11), as stated in Eq
~1!, is intrinsically nonlinear in the sense that it cannot
linearized. This statement implies that sound propagatio
not possible in a chain of elastic beads at zero precomp
sion, a phenomenon that has been referred to in the litera
as ‘‘sonic vacuum’’@3#.

To initiate sound propagation, one must introduce so
precompression in the system. The simplest case is unif
precompression, sayD, effected on every grain. The equatio
of motion of a bead in the chain~not at the boundaries! then
becomes,

md2ui~ t !/dt25na$@D1ui 21~ t !2ui~ t !#n21

2$@D1ui~ t !2ui 11~ t !#n21%, ~2!

where the right-hand side~RHS! of Eq. ~2! can be expanded
whenD.0. Nesterenko@3# showed that ifui varies slowly
in space, i.e., if the long-wavelength limit is invoked, and
D→0 and n!`, then Eq.~2! can be approximated via
1063-651X/2001/64~5!/056605~4!/$20.00 64 0566
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Korteweg–de Vries-type@3,4# equation, which admits a soli
ton solution for a propagating perturbation in the chain. N
terenko’s analysis has been improved@5#, tested numerically
@6#, and has been experimentally verified@3,7#. It is presently
well known that the solitary waves in 1D systems are ty
cally about 3 grain diameters wide@3,5#. High-precision nu-
merical studies indicate that two identical solitons, propag
ing in opposite directions in a chain with an even number
grains, completely negate one another at the point of cro
ing but do not completely negate one another in the vicin
of the point of crossing. Therefore, it would be appropriate
characterize these excitations assolitary wavesrather than
solitons.

In fact, the existence of solitary waves in granular me
is so robust that even in 3D, when a large area impulse
low-frequency~below a few kHz! acoustic signal is gener
ated at the surface of a granular bed, the impulse travels
weakly dispersive energy bundle, a phenomenon that
been simulated and experimentally validated@8#.

Given the small size of the solitary waves in 1D and
higher dimensions, it would be desirable to have an ex
solution or perhaps a more complete description of the s
tion to Eq.~2! that would be valid for arbitraryn and would
be appropriate for the construction of analytic descriptions
processes involving colliding solitary waves and backscat
ing of solitary waves from interfaces with density contra
~where long-wavelength approaches are no longer use!.
Constructing an exact closed form solution to Eq.~2! re-
mains a challenge. In this paper, we report an exact solu
that can be generated using a hybrid technique that exp
numerical analysis and an analytic form to describe the s
tary waves. As we shall see, the solution, does not require
long-wavelength approximation, directly solves Eq.~2! for
D50, and may be constructed to desired accuracy provi
the material parameters andn are known. This solution sig-
nificantly improves upon Nesterenko’s original solution@3#.
The present paper also allows us to revisit the Fermi-Pa
Ulam ~FPU! problem@9#. We show that our solution may b
interpreted as a solution to the FPU problem in an appro
ate asymptotic limit.

We start by assuming that a solitary wave is propagat
©2001 The American Physical Society05-1
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through the system. The displacement of individual gra
from equilibrium positionui(t) are continuous functions o
time but are defined only at discrete positionszi . Since the
solitary wave is nondispersive, we may assume that this
placement can be obtained from a wave-type continu
function of both space and time, from the relation

ui~ t !5u~zi ,t !5u~zi2ct!5u~a!, with a5z2ct, ~3!

wherec is the constant velocity of the solitary wave. It ma
be noted that in spite of the continuum approximation
space introduced above, the analytic solution to Eq.~2! de-
veloped here is in impressive agreement with the num
cally generated solution of the discrete system.

Our exhaustive numerical studies on Eq.~2! and also
other work@3# indicate that, for a givenn, the shape of the
solitary wave in space does not depend on the solitary w
amplitude. This implies that the functionu is described by
u(a)5Acn(a), where A represents the amplitude of th
solitary wave andA5u(2`)2u(1`)51. The quantity
cn(a) is an unknown generic function that describes
shape of the solitary wave and is expected to depend u
the index n, which controls the stiffness of the potentia
Because the solitary wave at any time is localized in spa
cn(a) should be necessarily zero fora→` ~z→` for finite
t, which represent a region that the solitary wave is yet
reach! and 1 fora→2` ~where grains have attained a ne
equilibrium position after the passage of the compress
produced by the tsunamilike or kink solitary wave!. A func-
tion that respects this boundary condition and may only t
intermediate values between 0 and 1, may be always wri
as

cn~a!51/$11exp@ f n~a!#%,

with f n~a!5 ln@1/cn~a!21#. ~4!

With this notation, the solitary wave function becomes

u~a!5~A/2!@wn~a!11#, with wn~a!52tanh@ f n~a!/2#.

~5!

One can see from Eq.~3! that du/dzu t52(1/c)du/dtuz .
Substituting Eq.~5! into Eq. ~2!, we get, fort50

~mc2/na!~A/2!n225@$wn~z22R!2wn~z!%n212$wn~z!

2wn~z12R!%n21#/@d2wn /dz2#

[C0~n!, ~6!

where the left-hand side~LHS! is independent ofz and the
RHS is independent ofm, a, and A. Thus, C0 should be
independent ofz, m, a, and A, which means thatC0 is a
constant that depends only onn.

The assumption that Eq.~2! admits a solitary wave solu
tion along with Eqs.~4!–~6! imply thatwn(z) is antisymmet-
ric with respect toz50 or an arbitrary constant, which is th
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center of solitary wave~recall thatt was set to zero!. This
fact, combined with the asymptotic limits forcn(z) and Eq.
~4! indicates that

f n~z!5 (
q50

`

C2q11~n!z2q11. ~7!

Since the functionwn(z) is independent of all quantitie
exceptn, knowledge of the coefficientsC0 , C1 , C3 , C5 ,...,
will completely solve the problem of pulse propagation f
any system supporting this type of solitary wave. In the a
sence of a simple analytical approach for inferringC0 and
C2q11 , one must resort to numerical methods for comput
these coefficients.

We now present a hybrid analytical-cum-simulational a
proach that allows computation ofC2q11 to any desired ac-
curacy via an iterative approach.

Recall that Eq.~6! implies that

c5$naC0~n!/m%1/2~A/2!~n22!/25d0A~n22!/2, ~8!

which implies that the propagation velocity of the solita
wave scales with its amplitude except whenn→2, wherec
becomes independent of amplitude, as expected.

As stated earlier, one obtains a solitary wave by numer
integration of Eq.~2! with D50 @6#. By generating solitary
waves with different amplitudes and measuring their vel
ity, one can computed0 and hence,C0 from Eq. ~8!. Note
that Eq.~8! does not depend on the otherC’s.

A derivative of Eq.~5! with respect tot ~recognizing that
wn(z)5wn(a)5wn(z2ct)) will yield, after using Eq.~8!,
the maximum velocity of the grain fora50

vmax5du~z2ct!/dtua5052c du~a!/dzua50

52~cA/2!dwn~z!/dzua50

5~naC0 /m!1/2~C1/2!~A/2!n/25d1An/2. ~9!

Again, the maximum velocity of the grain during th
propagation of solitary waves with different amplitudes c
be computed, which will offer the scaling coefficientd1 and
hence,C1 , via Eq. ~9!.

The antisymmetry of the solution in Eq.~7! implies that
even derivatives vanish at the center of the solitary wavea
50. However, we find,

d3u/dz3ua505~naC0 /m!3/2~3C32C1
3/4!~A/2!~3n24!/2

5d3A~3n24!/2, ~10!

d5u/dz5ua505~naC0 /m!5/2~60C5215C1
2C31C1

5/2!

3~A/2!~5n28!/25d5A~5n28!/2. ~11!

In Fig. 1 we present numerically obtained data forc,
vmax5du/dtua50, d3u/dt3ua50 , andd5u/dt5ua50 versusA for
the case n52.5. We directly obtain d050.7791, d1
5-2
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50.4666,d350.6221, andd552.3957 by linear regressio
of the data. Using these values in Eqs.~8!–~11! yields C0

50.8585,C152.3953,C350.2685, andC550.006 13.
Figure 2 presents the numerically simulated data forwn

and its time derivatives,dwn /dt, d2wn /dt2, d3wn /dt3,
d4wn /dt4, andd5wn /dt5 as functions ofz ~circles! and com-
parison with the solutions generated by employing
above-calculated coefficients in Eqs.~5! and ~7! for n55/2.
The coordinatez is measured in grain diameters (2R) and
the units for the derivatives ofwn with respect tot are arbi-
trary. The higher-order coefficients are neglected. The an

FIG. 1. Velocity of the solitary wave and odd derivatives wi
respect to time of the grain displacement are shown at the symm
point of the solitary wave for different amplitudes of the solita
wave. All the units are arbitrary. Linear regressions of the num
cal data provide power-law coefficients that are within 0.01% to
values predicted by Eqs.~9!–~12! and the unknown set ofd coef-
ficients.
05660
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sis can be extended to obtain higher-order coefficients
necessary. For cases withn<5, the first few coefficients are
given in Table I. These coefficients give excellent agreem
with numerical solutions~Fig. 2!.

In order to quantify the improvement achieved by t
present solution to Eq.~2! compared to Nesterenko’s solu
tion, in the upper panel of Fig. 3 we plotted the LHS and t
RHS of Eq.~2! as obtained via Nesterenko’s solution@3# @~c!
and~d!#, and that obtained using Eq.~7! with the appropriate
coefficients provided by the hybrid numerical-analytical a
proach described~a! and ~b!. The ratio of the right and left
term of Eq.~2! is also offered in Fig. 3~lower panel!, and
demonstrates that the present solution@case~e!# is a signifi-
cant improvement over case~f!, which shows Nesterenko’s
solution.

It turns out that the celebrated Fermi-Pasta-Ulam prob
considered a potential that can be written as

V~d i ,i 11!5kd i ,i 11
2 1aud i ,i 11un ~12!

whered i ,i 11 represent the compression and extension o
spring connecting particlesi, i 11 in a chain and the absolut
value of the nonlinear term is used to define a stable equ
rium for particles for all values ofa, k, andn. FPU consid-
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e

TABLE I. Values ofC2q11(n) in @Eq. ~7!#, for different values
of n, obtained with the method described in text.

n C0 C1 C3 C5

2.2 0.8709~6! 1.643~7! 0.082 23~9! 0.000 325 7~8!

2.35 0.6908~5! 2.3171~6! 0.2364~4! 0.003 407~4!

2.5 0.858 52~9! 2.3953~6! 0.268 52~9! 0.006 134~7!

3.0 0.9445~1! 3.0168~2! 0.5971~0! 0.0376~4!

4.0 1.3323~7! 3.5646~1! 1.331~4! 0.0676~3!

5.0 2.0517~4! 3.790 01~3! 2.177~5! 0.0665~1!
-

ed
FIG. 2. wn(z) and higher derivatives, with re
spect tot, for n55/2 ~Hertzian chain!, as func-
tions of z. The coordinatez is measured in grain
diameters andwn(z) has asymptotic values61/2.
The derivatives ofwn with respect to time have
arbitrary units~since the solitary wave velocity
depends on material parameters andA!, but their
shape is unique. Circles represent data obtain
via particle dynamics integration of Eq.~2!; the
continuous line is the analytic solution of Eqs.~5!
and~7!, with the corresponding coefficients from
Table I.
5-3
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eredn53,4 in their original work@9#. We show calculations
to describe the dynamics associated with the propagatio
an impulse in the FPU chain fora51, k50; a51, k51, and
a50, k51 in Fig. 4. It is obvious looking at Fig. 4 that th
FPU system will never equilibrate because it admits He

FIG. 3. Comparison between the present solution and the s
tion obtained by Nesterenko in the long wavelength approximat
In the upper panel,~a! and~b! represent the LHS and RHS, respe
tively, of Eq. ~2!, computed with the present solution.~c! and ~d!
are the corresponding curves computed with Nesterenko’s solu
@3#. In the lower panel, the ratio of the LHS and RHS of Eq.~2! is
computed with the present approach~e! and from Nesterenko’s so
lution ~f!.
.
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type solitary waves whenk→0 @9,10#. Interestingly, our so-
lution to Eq.~2! also serves as a solution to Eq.~12! in the
limit of k→0.

This work was supported by Sandia National Labora
ries, the U.S. Department of Energy~DE-AC-04-94AL-
85000!, and by the National Science Foundation~NSF-CMS-
0070055!.
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FIG. 4. Kinetic energy for grains 200 and 400 of the chain,
function of time ~all the units are arbitrary!, when ad function
perturbation is initiated at the beginning of the chain~grain 1!. In
the linear case~a!, the signal disperses during propagation. T
dispersion is weaker when nonlinear terms are present in the po
tial ~b!. For purely nonlinear interaction, a perfect solitary wa
propagates through the chain~c!.
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