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Solitary wave dynamics in generalized Hertz chains:
An improved solution of the equation of motion
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The equation of motion for a bead in a chain of uncompressed elastic beads in contact that interact via the
potentialV(8)~ 6", n>2, § being overlap, supports solitary waves and does not accommodate sound propa-
gation[V. Nesterenko, J. Appl. Mech. Tech. Ph¥s.733(1983]. We present an iteratively exact solution to
describe the solitary wave as a function of material parameters and a universal, infinite set of coefficients,
which depend only om. We compute any arbitrary number of coefficients to desired accuracy and show that
only the first few coefficients of our solution significantly improves upon Nesterenko'’s solution. The improved
solution is a necessary step to develop a theoretical understanding of the formatmondarysolitary waves
[M. Manciu, et al, Phys. Rev. B63, 011614(2001)].
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We consider a monodisperse chain of elastic spheres d€orteweg—de Vries-typg3,4] equation, which admits a soli-
radiusR in which the spheres are barely touching one an+on solution for a propagating perturbation in the chain. Nes-
other, i.e., there is zero loading of the spheres. The spherésrenko’s analysis has been improJéd, tested numerically
repel upon overlap by an amound;;,;=2R—[(z.,; [6], and has been experimentally verifig)7]. It is presently
+Ui;1)—(z+Uu))], wherez describes the initial equilib- well known that the solitary waves in 1D systems are typi-
rium position of the grain in the one-dimensiondllD) sys-  cally about 3 grain diameters wid8,5]. High-precision nu-
tem of elastic beads, and the displacement of the same merical studies indicate that two identical solitons, propagat-
grain from the equilibrium position. Then, according to ing in opposite directions in a chain with an even number of
Hertz law[1] the repulsive potential between two adjacentgrains, completely negate one another at the point of cross-

spheres is given by, ing but do not completely negate one another in the vicinity
of the point of crossing. Therefore, it would be appropriate to
V(8 .1)=a|d, .52 8=0, che_lracterize these excitations swlitary wavesrather than
solitons.
In fact, the existence of solitary waves in granular media
V(6ii+1)=0, 6<0, (1) s so robust that even in 3D, when a large area impulse or a

low-frequency(below a few kHz acoustic signal is gener-

where a=(2/[5D(Y,0)])(R/2)"* and D(Y,0)=(3/2)[(1  ated at the surface of a granular bed, the impulse travels as a
—0?)/Y], and Y and o denote the Young's modulus and weakly dispersive energy bundle, a phenomenon that has
Poisson’s ratio. In this paper, we study the dynamics for theyeen simulated and experimentally validaf&d
potential in Eqg.(1) and for the general cas¥(d;;1) Given the small size of the solitary waves in 1D and in
=ad; 1", n>2[1,2]. Given the magnitude af, it may be  higher dimensions, it would be desirable to have an exact
noted that the repulsive potentd(d; ;. ,), as stated in EQ. solution or perhaps a more complete description of the solu-
(1), is intrinsically nonlinear in the sense that it cannot betion to Eq.(2) that would be valid for arbitrary and would
linearized. This statement implies that sound propagation iBe appropriate for the construction of analytic descriptions of
not possible in a chain of elastic beads at zero precompregrocesses involving colliding solitary waves and backscatter-
sion, a phenomenon that has been referred to in the literatuigg of solitary waves from interfaces with density contrasts
as “sonic vacuum’[3]. (where long-wavelength approaches are no longer useful

To initiate sound propagation, one must introduce someonstructing an exact closed form solution to EB) re-
precompression in the system. The simplest case is uniforimains a challenge. In this paper, we report an exact solution
precompression, say, effected on every grain. The equation that can be generated using a hybrid technique that exploits
of motion of a bead in the chaimot at the boundari¢shen  numerical analysis and an analytic form to describe the soli-

becomes, tary waves. As we shall see, the solution, does not require the
long-wavelength approximation, directly solves E®) for
mdPu;(t)/dt?=na{[A+u;_4(t)—u;(t)]" ! A =0, and may be constructed to desired accuracy provided

the material parameters amdare known. This solution sig-
—{[A+uj(t)—uj. ()]}, (2)  nificantly improves upon Nesterenko’s original soluti@].

The present paper also allows us to revisit the Fermi-Pasta-
where the right-hand sid&RHS) of Eq. (2) can be expanded Ulam (FPU) problem[9]. We show that our solution may be
when A>0. Nesterenkd3] showed that ifu; varies slowly interpreted as a solution to the FPU problem in an appropri-
in space, i.e., if the long-wavelength limit is invoked, and if ate asymptotic limit.

A—0 andn<, then Eq.(2) can be approximated via a  We start by assuming that a solitary wave is propagating

1063-651X/2001/645)/05660%4)/$20.00 64 056605-1 ©2001 The American Physical Society



SURAJIT SEN AND MARIAN MANCIU PHYSICAL REVIEW E 64 056605

through the system. The displacement of individual graincenter of solitary wavdrecall thatt was set to zero This
from equilibrium positionu;(t) are continuous functions of fact, combined with the asymptotic limits far,(z) and Eq.
time but are defined only at discrete positians Since the  (4) indicates that

solitary wave is nondispersive, we may assume that this dis-

placement can be obtained from a wave-type continuous o
function of both space and time, from the relation fo(2)= >, Coqy1(mZ29+. (7
gq=0
u()=u(z t)=u(zi—ct)=u(a), with a=z-ct, (3) Since the functionp,(z) is independent of all quantities

exceptn, knowledge of the coefficiengy, C4, C3, Cs,...,
will completely solve the problem of pulse propagation for

be notgol tfgiat ":j S'%'te oftrt]he co:wt;_nuurrll tc’?\pprtoxmaélon Inany system supporting this type of solitary wave. In the ab-
space introduced above, the analytic solution to @ de- .sence of a simple analytical approach for inferridg and

Xg:glpggnr;?;?e:jssgultr?:)%r%sfstlr\llg ;g(r:?:tgesr;/tstv:rtr? the numen-czm 1, one must resort to numerical methods for computing

0 haust ical studi H®) and al these coefficients.

th ur exk[agt]Js_ “é.e r:ur?r(]er![c? studies OTh qh an ?tsr? We now present a hybrid analytical-cum-simulational ap-
other wor Indicate that, for a givem, the shape ot th€ .o -, that allows computation @, , to any desired ac-
solitary wave in space does not depend on the solitary wav% : : : q

) L S X uracy via an iterative approach.

amplitude. This implies that the functiamis described by Recall that Eq(6) implies that
u(a)=Ay,(a), where A represents the amplitude of the
solitary wave andA=u(—=)—u(+=)=1. The quantity B B

(@) is an unknown generic function that describes the c={naCy(n)/mi"(A2)""2"2=deA""22 (g)
shape of the solitary wave and is expected to depend upon, . . . . .
the indexn, which controls the stiffness of the potential. which implies t.hat' the prqpagat|on velocity of the solitary
Because the solitary wave at any time is localized in spac ave scales with its amplitude except when: 2, wherec

(@) should be necessarily zero far—«~ (z— oo for finite ec;om?stu(]jdepelz_ndent of g{n_plltude, If":S expectet()j. ical
t, which represent a region that the solitary wave is yet tq S staled earlier, one obtains a solitary wave by numerica

reach and 1 fora— — (where grains have attained a new integration of_Eq.(2) with A=0 [6]. By generating solitary
equilibrium position after the passage of the compressioﬁfvaves with dlfferentdamplléuﬁes and rpeasuErlngSthel\llr veloc-
produced by the tsunamilike or kink solitary wavé func- 'tﬁ" olge %andcomput dO an d encECO rr%g d- (8). Note
tion that respects this boundary condition and may only takdhat q.(8) does not depend on the othels,

intermediate values between 0 and 1, may be always written A derivative of Eq.(5) With. res_pect a (recognizing that
as on(2)=¢on(a) =@ (z—ct)) will yield, after using Eq.(8),

the maximum velocity of the grain fox=0

wherec is the constant velocity of the solitary wave. It may

'pn(a'):l/{l""exqfn(a)]},

Umax=du(z—ct)/dt| ,—o=—cdu(a)/dZz ,—o
with f,(a)=In[1/p,(a)—1]. (4) =—(CA2)den(2)/dZ] -0
With this notation, the solitary wave function becomes: =(naCy/m)Y4Cy/2)(AI2)"2=d, A", 9

. Again, the maximum velocity of the grain during the
u(a)=(A2)[en(a)+1], with ¢y(a)=—tanfifn(a)/2].  propagation of solitary waves with different amplitudes can
(50 be computed, which will offer the scaling coefficiesht and

_ hence,C,, via Eq.(9).
SUSQEU?% Ss(f(;;ﬂmoEg? (t;)atvt\:/i:/éjeztlt;ort(zlcl)c)du/dtIZ. The antisymmetry of the solution in E¢7) implies that
S ' even derivatives vanish at the center of the solitary wave
=0. However, we find,
(MEna)(Al2)" ?=[{¢n(z—2R) — ¢n(2)}" "~ {en(2)

— (24 2RI /[ 0%, 1d 2] du/dZ?| ,—o=(naCy/m)3H3C3— C3/4)(A/2)3"~ 42
=Cy(n), 6) =dg A2, (10
Where_ th_e left-hand sidd_HS) is independent of and the d5u/dz5|a:0=(naCOIm)5’2(60C5—15C§C3+C§’/2)
RHS is independent of, a, and A. Thus, C, should be
independent oz, m, a, and A, which means thaC, is a X (AJ2)5n=8)2= g A(5N=8)/2 (11)
constant that depends only on
The assumption that E@2) admits a solitary wave solu- In Fig. 1 we present numerically obtained data for

tion along with Eqs(4)—(6) imply that ¢,(z) is antisymmet- v pa,=dudt),—o, d3u/dt3| ,_,, andd®u/dt®| ,_, versusA for
ric with respect taz=0 or an arbitrary constant, which is the the case n=2.5. We directly obtaind,=0.7791, d;
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TABLE I. Values ofCyq41(n) in [Eq. (7)], for different values
of n, obtained with the method described in text.

. n Co C, Cs Cs
2.2 0.87096) 1.6437) 0.082239) 0.0003257)
107 2.35 0.690%) 2.31716) 0.23644) 0.003 4074)
25 0.8585%) 2.39536) 0.268529) 0.006 1347)
10* 3.0 0.9445%1) 3.01682) 0.59710) 0.03764)
. 4.0 1.33287)  3.56481) 1.3314) 0.06763)
° 50 2.05174) 3.790013) 2.1775) 0.066%1)
o v, =(do/d)
10°° A . (dS‘D / dta)max
o (do/dt), sis can be extended to obtain higher-order coefficients, if
107 necessary. For cases witl=5, the first few coefficients are

T T A given in Table I. These coefficients give excellent agreement
10 with numerical solutiongFig. 2).

In order to quantify the improvement achieved by the

FIG. 1. Velocity of the solitary wave and odd derivatives with Present solution to E¢(2) compared to Nesterenko'’s solu-
respect to time of the grain displacement are shown at the symmet#jon, in the upper panel of Fig. 3 we plotted the LHS and the
point of the solitary wave for different amplitudes of the solitary RHS of Eq.(2) as obtained via Nesterenko’s soluti8] [(c)
wave. All the units are arbitrary. Linear regressions of the numeri-and(d)], and that obtained using E(y) with the appropriate
cal data provide power-law coefficients that are within 0.01% to thecoefficients provided by the hybrid numerical-analytical ap-
values predicted by Eq$9)—(12) and the unknown set af coef-  proach describeda) and (b). The ratio of the right and left
ficients. term of Eq.(2) is also offered in Fig. 3lower pane), and
demonstrates that the present solutioase(e)] is a signifi-

—0.4666,d5=0.6221, andds=2.3957 by linear regression cant improvement over caé), which shows Nesterenko’s

. . : solution.

Sc;[r;aesgstg :Uglggst;%se:\galzue)esss|narI]E:g:8);(élc))oygellgs Co It turns out that th_e celebrated Fermi-Pasta-UIam problem

» it 13T AT 5~ ' considered a potential that can be written as

Figure 2 presents the numerically simulated datadgr
and its time derivativesde,/dt, d?¢,/dt?>, d3¢,/dt3,
d*e,/dt*, andd®e,/dt® as functions of (circles and com- V(S ir1)= k5§i+l+ ald; " (12)
parison with the solutions generated by employing the
above-calculated coefficients in EqS) and(7) for n=5/2.  where §; ;. represent the compression and extension of a
The coordinatez is measured in grain diametersRR and  spring connecting particlési + 1 in a chain and the absolute
the units for the derivatives af,, with respect ta are arbi- value of the nonlinear term is used to define a stable equilib-
trary. The higher-order coefficients are neglected. The analydium for particles for all values o#, k, andn. FPU consid-

A

0 0A6-. g_(E 0.8
gzzl"‘\ at ol
0.0 04
-0.2 \\
04 \\ 0.2 / ) o )
04 SRS ’ ., FIG. 2. ¢,(2) and higher derivatives, with re-
-0.6 , . , : . . 0.0 . , : : ‘ + . -
3 2 4 0 1 2 3 3 2 0 1 2 3 spect tot, for n=5/2 (Hertzian chaih, as func-
dip 10 z d*e 21 z tions of z. The coordinate is measured in grain

e ] at 1 diameters an@,(z) has asymptotic values1/2.
s /\ 0 /’\ l/\\s The derivatives ofp,, with respect to time have
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FIG. 4. Kinetic energy for grains 200 and 400 of the chain, as
FIG. 3. Comparison between the present solution and the soluifunction of time (all the units are arbitrajy when aé function

tion obtained by Nesterenko in the long wavelength approximationperturbation is initiated at the beginning of the chéinain 1. In

In the upper panel@ and(b) represent the LHS and RHS, respec- the linear casga), the signal disperses during propagation. The

tively, of Eq. (2), computed with the present solutiofe) and (d) dispersion is weaker when nonlinear terms are present in the poten-

are the corresponding curves computed with Nesterenko’s solutiotial (b). For purely nonlinear interaction, a perfect solitary wave

[3]. In the lower panel, the ratio of the LHS and RHS of E2).is propagates through the chdic).

computed with the present approa@h and from Nesterenko’s so-

lution (f). type solitary waves whek—0 [9,10]. Interestingly, our so-

lution to Eq.(2) also serves as a solution to E42) in the

: S i limit of k—0.
eredn= 3,4 in their original wor{9]. We show calculations

to describe the dynamics associated with the propagation of This work was supported by Sandia National Laborato-
an impulse in the FPU chain far=1,k=0; a=1,k=1,and ries, the U.S. Department of EnergfDE-AC-04-94AL-
a=0, k=1 in Fig. 4. It is obvious looking at Fig. 4 that the 85000, and by the National Science FoundatiN&F-CMS-
FPU system will never equilibrate because it admits Hertz0070055.
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